An efficient implicit-explicit adaptive time stepping scheme for multiple-time scale problems in shear zone development
نویسندگان
چکیده
[1] Problems associated with shear zone development in the lithosphere involve features of widely different time scales, since the gradual buildup of stress leads to rapid and localized shear instability. These phenomena have a large stiffness in time domain and cannot be solved efficiently by a single time-integration scheme. This conundrum has forced us to use an adaptive time-stepping scheme, in particular, the adaptive time-stepping scheme (ATS) where the former is adopted for stages of quasistatic deformation and the latter for stages involving short time scale nonlinear feedback. To test the efficiency of this adaptive scheme, we compared it with implicit and explicit schemes for two different cases involving: (1) shear localization around the predefined notched zone and (2) asymmetric shear instability from a sharp elastic heterogeneity. The ATS resulted in a stronger localization of shear zone than the other two schemes. We report that usual implicit time step strategy cannot properly simulate the shear heating due to a large discrepancy between rates of overall deformation and instability propagation around the shear zone. Our comparative study shows that, while the overall patterns of the ATS are similar to those of a single time-stepping method, a finer temperature profile with greater magnitude can be obtained with the ATS. The ability to model an accurate temperature distribution around the shear zone may have important implications for more precise timing of shear rupturing.
منابع مشابه
A General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity
In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...
متن کاملAn adaptive multiresolution scheme with local time stepping for evolutionary PDEs
We present a fully adaptive numerical scheme for evolutionary PDEs in Cartesian geometry based on a second-order finite volume discretization. A multiresolution strategy allows local grid refinement while controlling the approximation error in space. For time discretization we use an explicit Runge–Kutta scheme of second-order with a scale-dependent time step. On the finest scale the size of th...
متن کاملA parallel explicit/implicit time stepping scheme on block-adaptive grids
We present a parallel explicit/implicit time integration scheme well suited for blockadaptive grids. The basic idea of the algorithm is that the time stepping scheme can differ in the blocks of the grid for a given time step: an explicit scheme is used in the blocks where the local stability requirement is not violated and an implicit scheme is used in the blocks where the explicit scheme would...
متن کاملTowards Implicit Resistive Magnetohydrodynamics with Local Mesh Refinement
Efficient and accurate solution of the resistive magnetohydrodynamics model presents a significant challenge due to the presence of multiple length and time scales. Explicit time stepping methods introduce stringent CFL restrictions on the time step in order to maintain stability. This restriction is relieved by semi-implicit approaches, but accuracy considerations place practical limits on the...
متن کاملParallelisation of MACOPA, A Multi-physics Asynchronous Solver
Macopa is a partial differential equations solver based on a particular local time stepping technique dedicated to multi-physics and multi-scale problems. Here, some parallelisation strategies – multithreading, domain decomposition, and hybrid OpenMP/MPI– are introduced for this solver. Their efficiency is evaluated on a few examples. 1 Context Numerical simulation has become a central tool for...
متن کامل